A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Zhao, W.; Li, Z; Sun, J. J. Am. Chem. Soc. 2013 ASAP

Joshua Sacher 23 March 2013

Macrolactonization

Parenty, A.; Moreau, X.; Niel, G.; Campagne, J.-M. Chem. Rev. **2013**, 113, PR1 Illuminati, G.; Mandolini, L. Acc. Chem. Res. **1981**, 14, 95

Previous Work

Zhao, W.; Wang, Z.; Sun, J. Angew. Chem. Int. Ed. 2012, 51, 6209

Oxetene Fragmentation

Real Examples

Rhee, J. U.; Krische, M. J. *Org. Lett.* **2005**, *7*, 2493 Arumugam, S.; Popik, V. V. *J. Am. Chem. Soc.* **2009**, *131*, 11892 Harding, C. E.; King, S. L. *J. Org. Chem.* **1992**, *57*, 883

Ynolates

Ynol Ether Scope

Entry	R	yield
1	<i>n</i> -Bu	91%
2	<i>n</i> -Oct	85%
3	(CH ₂) ₃ Ph	77%
4	<i>c-</i> Pr	89%
5	<i>t</i> -Bu	84%
6	Ph	64%
7	(CH ₂) ₃ OTIPS	62%
8	`	58%

- Optimized acetal, Lewis acid, additive
- Sterics not an issue
- Conjugation problematic
- $R \neq H$ (unstable ynol ether)

Proposed Mechanism

Ketals: Selected Examples OTIPS **n+2** *п-*Ви n BF₃•OEt₂, 2,4,6-col CH₂Cl₂, 0 °C 0 'OR' *n*-Bu CH_3 n-Bu *n*-Bu n-Bu Ο *_ n*-Bu n-Bu 8 (E) 9 10 18 8 87% 93% 77% 86% 88% yield R (1:1 *E/Z*) OTBS 75% OBz 56% 52% N_3 O-allyl 65% n-Bu 63% O-propargyl OBn =0 .,OBn BnO, 70% No Reaction

Extensions

Iterative Ring Expansion:

Conclusion

- New methodology for forming medium- and large-ring lactones
- Unprecedented ring expansion reaction manifold for oxetenes
- Normal reaction concentrations, no slow addition
- Iterative process possible to generate large rings from inexpensive material
- Must use substituted alkynes due to instability
- Potential problems with electronics of alkyne
- Limited use in complex systems to date.